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Asymmetric desymmetrization I of meso-compounds involving carbon-carbon bond formation is a versa- 

tile method for the production of chiral non-racemic organic molecules. 2 Recently, we reported asymmetric 

Horner-Wadsworth-Emmons (HWE) olefination 3 by utilizing a chiral phosphonate reagent (S)-I, and demon- 

strated that the reagent differentiated the enantiotopic carbonyl groups in meso-R-diketone 2 to give a (+)-(Z)- 

enone 3 in almost optically pure form concomitant with a trace amount of a (+)-(E)-isomer 4, the enantiomeric 

excess (ee) of which was considerably low (Scheme 1)4 The sense of absolute stereochemistry of both the (Z)- 
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and (E)-isomers 3 and 4 was proven to be the same by the photochemical conversion of 3 into 4 without loss of 

optical purity. However, in our attempt to provide a rationale for such a high ee of 3, an inexplicable aspect of the 

absolute stereochemistry of the minor product 4 was disclosed. This paper describes findings which support that 

the sense of absolute stereochemistry of the (Z)-isomer is inherently opposite to that of the (E)-isomer, and thus 

the low ee of 4 is due to the conversion of 3 into 4 under the reaction conditions and/or during the work-up 

process. 

F i g u r e  1. Schematic presentation of  the steric environment for (a) the anion of  HWE 
reagent (S)-I and (b) the substrate 2. 
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It is generally accepted that the 

addition step is rate-determining in the 

HWE reaction, when the (Z)-isomer is 

the major product. 3b,5 Since the reac- 

tion of (5)-1 with 2 gave the (Z)-isomer 

3 predominantly, energetically favor- 

able approach of the reagent (S)-1 to the 

substrate 2 should govern the stere- 

ochemistries of the products. It is also 

accepted that the anion derived from 

the phosphoryl-stabilized HWE re- 

agent exists in a chelated form as 

Figure 2. Possible approaches of the anion of the HWE reagent (S)-I to 2. 
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shown in Figure la. 3a Since the re-face 

of the planar nucleophilic carbon derived from (S)-I is sterically hindered due to the hydrogen atom at C-3 of the 

naphthyl ring, an electrophile should approach from the si-face of the reagent. Figure lb illustrates the approach 

of the anion of (S)-1 to the meso-diketone 2, in which endo-attack is severely impeded due to the substituents at 

C-5 and C-6. Note that the exo-faces of C-2 and C-3 carbonyls are the re- and the si-face, respectively. Thus, 

only two possible combinations of the anion and the substrate 2 can be considered as a transition state (Figure 2a 

and b). The former involving the si/exo-re combination does not have the severe steric and electronic interac- 

tions such as exist in the latter combination. Thus, the (Z)-isomer was obtained as a major product. The (E)- 

isomer obtained from the latter combination should be not 4 but ent-4. The conclusion drawn from this consid- 

R 
O 

5 :R=Ac  8 
6 :R=Bn 

7 7 
~ 4  MeOOC k l  

H 11 :R=Ac 12: R=Ac 
13:R=Bn 14:R=Bn 

M e O O C ~  

H 

M e O O C / O ~  
21 H 

O O 9 O 10 

MeOOC 
~{ 15 16 

Me:  
O.~V -- MeOOC O.V,.-.- 

18 20  H 

M e : O ~  Me O H O..~ ~ 

22 23 



8945 

eration is that a different carbonyl group is selected for the production of the (Z)- and the (E)-isomer, respec- 

tively, so that the sense of chirality of the (Z')-product is opposite to that of the (E)-product. 

We studied the asymmetric HWE reaction of (S)-I with compounds 5-1063 to obtain the substantiative 

evidence for the above conclusion. Results are summarized in Table 1. The observed ZIEratio 8 varied with the 

structure of a-diketones. The (Z)-isomers were formed in preference to (E)-isomers for 5-7 having endo-sub- 

stituents at C-5 and C-6 and vice versa for 8-10 having an olefinic linkage between C-5 and C-6. A higher degree 

of asymmetric induction was observed with (Z)-adducts in every case. 

Table 1. The Asymmetric HWE Reaction of 5 - 10 with (S)-I. 

product 
~t-diketone 

(Z)-isomer yield,% a %ee (E)-isomer yield,% a %ee Z/Erafio 

5 11 58 90 12 23 23 b 72:28 

6 13 68 89 14 23 8 b 75:25 

7 15 57 93 16 15 <1 b 79:21 

8 17 25 97 18 58 79 30:70  

9 19 35 97 20 62 45 36:64 

10 21 30 99 22 53 28 36:64  

alsolated yield, bVaried within ±10%. 

Table 2. Selected CD Spectral Data of Adducts and Related Compounds. a 

compound 2~aax ([0]) 

11 290 (-700) 241 (5,800) 205 (-15,100) 

ent-12 293 (-1,000) 244 (33,400) 206 (-21,300) 

17 353 (-5,300) 265 (17,900) 230 (-8,800) 

18 361 (6,400) 262 (-38,200) 231 (53,300) 

19 353 (-5,600) 271 (14,800) 238 (-23,300) 

20 345 (2,600) 265 (-13,800) 238 (37,300) 

24 266 (-1,900) 230 (14,400) 206 (-11,900) 

26 278 (2,100) 237 (-30,000) 206 (24,800) 

aMeasured in MeOH at 24 °C. 

CD data shown in Table 2 indicate that the absolute configurations at C-1 and C-4 of (Z)-adducts are 

opposite to those of the (E)-series. The (Z)-adduct 11 was converted into the known compound 234 by the 

reaction with (R)-1-phenylethylamine followed by the hydrolysis. Photoisomerization of 11 afforded ent-12 to 

confirm that the sense of ab- 

solute stereochemistry of 

(Z)-isomer 11 is opposite to 

that of E-isomer 12. Other 

(Z)-isomers 13 and 15 were 

readily converted to the cor- 

responding (E)-isomers on 
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standing at room temperature or by the irradiation of uv light, which might be the reason why the low and 

inconstant ee values were observed for (E)-products 12,14, and 16. On the other hand, 17, 19, and 21 bearing the 

sp2-carbons at C-5 and C-6 resisted the photoisomerization. Thus, ketalization of 17 followed by the reduction 

of the double bond across C-5 and C-6 with diimide gave 24 after deprotection. Isomerization of 24 took place 

easily by the irradiation with a Xe lamp to afford the corresponding (E)-isomer 25, which turned out to be 

enantiomeric to 26 derived from 18 by a sequence of reactions similar to that for 17 (Scheme 2). 

These findings strongly support our mechanistic picture proposed in Figure 2, in which the reagent (S)-I 

differentiates the enantiotopic carbonyl groups of tx-diketones in the bicyclo[2.2.1 ] system 

to give the (Z)- and the (E)-isomer, respectively. An intriguing feature of the mechanism ~ k  
o 

in Figure 2 is that the HWE reagent approaches a carbonyl group from the exo-face exclu- Ph 

sively even for 8 - 10, although the endo-face seems to be less hindered. The exclusive OH 
27 

exo-approach ofa  nucleophile was supported experimentally. Thus, the reaction of 8 with 

phenylmagnesium bromide gave 279 in 87% yield. Theoretical calculations axe currently underway to clarify the 

face selectivity of a nucleophilic attack to 8. 
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